Deltares

Urban Resilient Infrastructure

Climate Adaptation: solutions from different corners of the world is about adapting infrastructure to new conditions caused by climate change in Canada and the Netherlands.

May 2022

enabling delta life

Q Zoeker

Introduction: Floris Boogaard

Deltares

Content: Small scale **urban resilient infrastructure** in practise: what, where and does it work?

- 1. Challenges
- 2. Solutions
 - 1. The Netherlands
 - 2. Canada
 - 3. Global
- 3. Practical examples of resilient infrastructure
 - 1. (how) does it work?
- 4. Tools and information
- 5. More info

Deltares

<u>Analysis</u>

Ambition

Analysing your area Fo

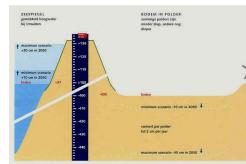
Formulating your ambition

Policy and implementation

Challenges urban climate (Holland)

floodings

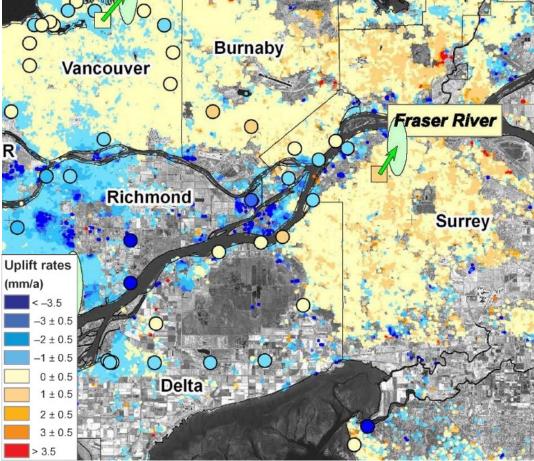
heatstress



waterquality

drought

subsidence



Dutch examples of problems in the urban areas: floodings, degradation of waterways, heatstress, drought leading to lower groundwater table and subsidence with results as damage of buildings

Why GI? To face urban challenges



The Netherlands and Vancouver face some of the same challenges, like subsidence

Land subsidence in Vancouver

Deltares

Expected subsidence 2020-2100 in the Netherlands Verwachte bodemdaling (cm)

	3-10	10-20	20-40	40-60	>60
Geen voorspelling mogelijk	Beperkt	Matig	Vrij sterk	Sterk	Zeer sterk

Sinking cities

1. Jakarta, Indonesia

2. Lagos, Nigeria

3. Houston, Texas

4. Dhaka, Bangladesh

5. Venice, Italy

facte

The Bead

6. Virginia Beach, Virginia

Virgi 7. Bangkok, Thailand

9. Rotterdam, The Netherlands

Dredgers work to create new land in front of the Europort to create the Europort nr. 2 in Rotterdam September 1, 2009. With scientists predicting fishing p that sea levels will rise by about one metre (3.3 feet) this century, the Dutch are reversing centuries of tradition to create natural flood plains for rivers as well as rebuild mangrove swamps as buffers against the sea. Instead of raising dikes, the Dutch want to reclaim land and build public recreation areas that can absorb storm surges. Picture taken September 1, 2009.

According to The New York Times, 90% of the city of Rotter The Inc level. As ocean levels rise, the risk of flooding increases. miles a

million Like Bangkok's Chulalongkorn University Centenary Park, th cost S "water parks" that double as reservoirs for the swelling wate called Room for the River, as well as enormous storm surge Read more: Inc dist Ocea

DCILUICS

but will lik https://www.weforum.org/agenda/2019/09/11-sinking-cities-that-could-soon-be-underwater/top-ranked str

A man di

Jakarta

pumpi

sink). I

People

capital

Lagos

warm

A 201

to nin

regior

REU'

Par

grou

The

disa

Vehicl

Bano

Band

but t

acco

hundreds of miles. He citize 2003. It's Ban

Tourist walk

REUTERS/G

Venice is

Italy bega

mag

A levee gives v Katrina struck

WORLD ECONOMIC FORUM aenda Platforms Reports Events

Global Agenda Climate Change Cities and Urbanization

These 11 sinking cities could disappear by 2100

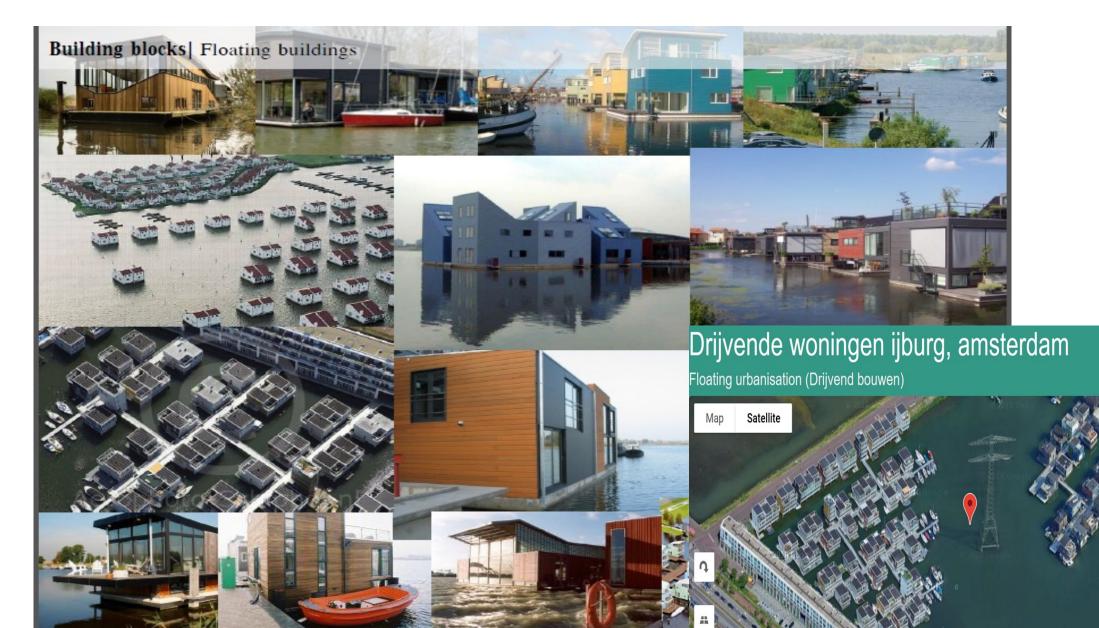
8. New Orleans, Louisiana

10. Alexandria, Egypt 11. Miami, Florida

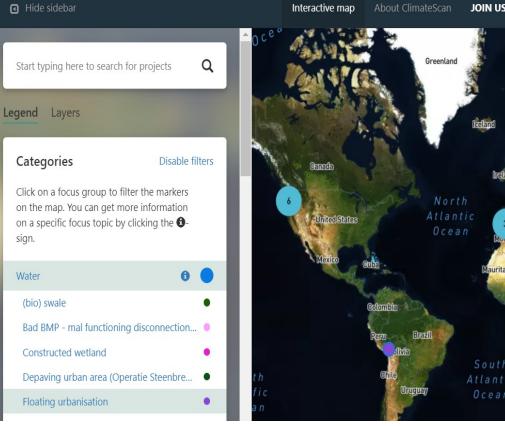
Solutions Canada-Netherlands

Dutch: Floating urbanisation, room for the river

Challenges urban climate (change)



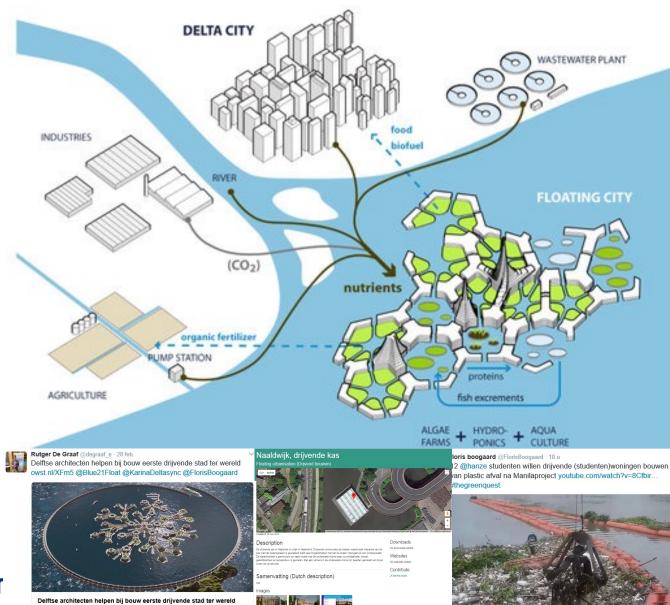
Deltares


Where to find: Floating urbanisation

→ C ŵ (\rightarrow) ... 🖂 🔂 0 A sttps://www.climatescan.org/#filter-1-2 1 JOIN US Interactive map Q Start typing here to search for projects ٢ Legend Click on a focus group to filter the markers on the map. You can get more information on a Global Centre on Climate Adaptation specific focus topic by clicking the 🕒-sign. Headquarter in Rotterdam Focus topic: Water Water Category: Floating urbanisation (bio) swale Floating urbanisation . Permeable pavement . Green roofs and walls • **GLOBAL** Subsurface infiltration . **CENTER ON** Gully free roads • **ADAPTATION** Problem area ٠ Constructed wetland • Water quality improvement ٠ Other categories . . Stormwater on private property Watersquare . Storage for water surfacewater storage & infiltration • Rainwater harvesting . Urban bathing water . Australian (eg bio retention, rainwater ha... . Raingarden . Paul Nijghkade Retention pond

Floating and amphibious life

Tools and examples Floating urbanisation Climatescan.org



Future? New floating cities

Dromen van wonen op drijvend afval

tudenten van de lanzehogeschool	weade wood soon to humon ontwik			
	brien lloogard. Hilde worstaller	'Als er geen ruimte meer	wordings can page houses on pro- beren draam bit voor de plannen in	droge voeien is braden in de toe
	was or movelal for student or over		vinden. Zo inan zo eva femeninza-	Abrelies was het sizes on plan
naakten al bootjes	moment met het project bezig. Bit	is, ga je het	mellaguarite housies es sijs pe mei	ik aval to hergebraiken avgi lico
an drijvend afval.	voortswiki om de elfisiten op Water- kwaliteit is onderzoeken. Dat ging	water op'	de prezonaio Graningen in overleg pref de richtburbeid die deze artik	gant dat delwend wonen als sen kli
lu richten ze zich	televes on elementary an projec-		kan krippe.	was allected magnifikheden hied
	ing. We willes my volwandly bridg		Dat fi ook work voor Emmulee	waar de koekomst. Nederlanders
op complete drij-	gaan met differede woningen."	minder zonlicht op het water). In	Bruam (ug) die vermoedelijk de op-	gass overal naar toe ors cliken to
ende woningen.	De studenien - van iechniek int mychologie - gaan zich in geweien	projectes met ondernebooiles met seniores werd de wajertwalliel bil	vallendnie stadierk hing bil dit pro- ject heelt, inserenzie finscheisofe.	boowen. Haur dat creiert ook achtpreiligheid. Wij hebben al eeu
	yas twee of drie begieboades met	Movertal codemocht.	Normaal oon will commann becord	we water charge a main in andere
	onder meer energie design en strac-	In de huidige fan onderzoeken	mgt de statiente in kwentle. Maar ik	landen is dat niet zo. In Rangladech
LICAME DURSTRA	har van de worlingen. Het hatnie wat is moet doen is daar alleen een	studentes wills abalproductes	whore so het contact met externe	biporteeld, war ook dijfen zijn
rie weisen prieden sin p	wal p most down is daar alleve even inclusion on million", stell de inclus.	doursame bouwsieteen kannet sin. Je kiken goed maar weke majeria	belangfæbbenden." Braam zegt dat	gebouwd mitt men in het land bouwgebied laist door die dillere het
begannen hwaalf stalieer	Zigs studening hobben al alleried	ien billven dei ben, impelijt willen zo	expects on met ervaringsdeakand?	wruchthare alle was het water."
ten zut de Hannshoge	projectes gelaan. In Talwan wares	onidekten weike mainfalen hei	gen, much mennen die op woonbe-	Maar Roogaard will ook dichter bij
school die allerand in	twee pur geleden stale nice beirok ten bil seh project mod bei maken	ment wagagoold worden. Houw handwhaven Thomas Haan (ac) will	ten wonen. In vanaf volgende week beefni ze een onde moet met forag	hats killers, Jubi ook maar Gronin gen", sogt hil, in een gebied dat in
burner uit verschillende skaller	yas drillende tainen met een by	ap een 'adantie' dourraam funde	groepen die zo een burbnel over	maken heeft met booemdaling en
chilment maar wrebre woor het	dem sun pieparimien. Dool- sinden	ringurgativent onliverpen, no one	motivate en behoeften hat meien.	stilping can do assessment bewages
niste gedeelle van de studie samen	vergroenen en gezinder maken. Ook alle oor soniel koren studenien	strift bijzin ege opdracht.	Darin komi biyoorbeeld privacy	dell whateges op idely schombe
an own project can tail alval drijeen:	Out zim we assist breve studeeten op de Hilpfinen geweet om mel star	Maarweith ook heel druk bedg met contact toeken met klanten.	an bod. De woningen zin mir	ing new, is an gedachie. Ook rely wert hil aan de bevolkingsgroei op
In Kenniscentrum Noorderfluim	denies van andere hogescholen me-	warmier beihub', wriel hit	Dal ondermark levert magnifik al	artie. Als or great mittally hear it.
aan de Hanne wordt al lange tijd	ation minutes is melos nor	Recovered less set dat de studientien.	letiel matting instal your hel bours	ga is het water on."
superimentated met driveral	problemen mellafeal in rivieren. Daarmaant onderzochien ze de	op flittatief van Haan, han huidige nan ook ingediend hebten billang	project op. Thei most utielindelijk let- den tot multige toepurzing in de	"Oracial de stademien dit par ho- pen of le stademe, maken ze niel
ar lector reintielike transform	wentiand increasing to us	fell on Bellyanthrouge warmer	are not surge cosputing in an	nee wat hun incommingen ullein
es, in vanaf het begin beirokken bij	maint no lovellen dat wegunningen	space ways to winners it. Mochine	hier sleave vormen van drijwend	delik allemai opieveris, iraam
projecten op diligebled. Na tal van	voor differede woningen som niet	as winnen, dan neemt het onder	women i in dit die bestie witne om in is	R denk dat indersen im van de stu
rieven mei drivende construction, Indi hij de tijd rijp voor sumenwer	worden weisend omdat de water kwalikeit erunder zus lijden (door	mek een onorme vlacht en kan het bouwen haait beginnen.	spelen op inekomstige sovaarids van ieren met water? Zouden we	depunies heel gemotive-ed is nich hier vol voor in is neiten."

Weinig invloed op ecosysteem onder drijvende objecten

Deltar

Delftse architecten helpen bij bouw eerste drijvende stad ter wereld Een Delfts architectenbureau Blue21 werkt mee aan een bijzonder project. Zij onderzoeken op dit moment de bouw van 's werelds eerste drijvende st..

Flexible small urban Resilient infrastructure

I have no interest in who built the drain system... I want to know who built the fence!

Deltares

	name	definition	Visual (source: wwclimatescan.nl)
1	Swale	A shallow vegetated channel designed to conduct and retain water, but may also permit infiltration. The vegetation filters particulate matter.	
2	Constructed wetland	Wetland: flooded area in which the water is shallow enough to enable the growth of bottom-rooted plants. Wetlands are constructed in urban areas to store water after stormwater events and improve waterquality.	
3	Waterharmonica	Ecological engineering treating waste water into usable surface water. The Waterharmonica focusses on integrated ecological engineering processes, by optimising multifunctional constructed wetland processes.	
4	Green roofs (and walls)	A roof with plants growing on its surface, which contributes to local biodiversity. The vegetated surface provides a degree of retention, attenuation and treatment of rainwater, and promotes evapotranspiration.	
5	Floating urbanization	Floating or amfibious constructions as floating homes will adapt to variation or waterlevels (flooding, drought). Floating homes are constructed around the world to adapt to climate adaptation.	
6	Permeable pavement	A permeable surface the trian of and drains through voids between solid parts of the pavement. A a surface that is formed of material that is itself impervious to wate e of voids formed through the surface, allows infiltration of water e se through the pattern of voids, for example concrete block pavi	
7	Opportunities for adaptation	This category show at provide opportunities for climate adaptation. Uploaded projects tation of nature based solutions or locations that are suited	
8	Hollow gully free roads	Roads that are convergence of the second sec	
9	Sub-surface infiltration	A sub-surface structure to which storm water is conveyed, designed to promote infiltration.	
10	Flexible small urban Resilient	An upcomming categorie linked to flexible flood walls to protect infrastructure	Transie Len V

Flood barriers

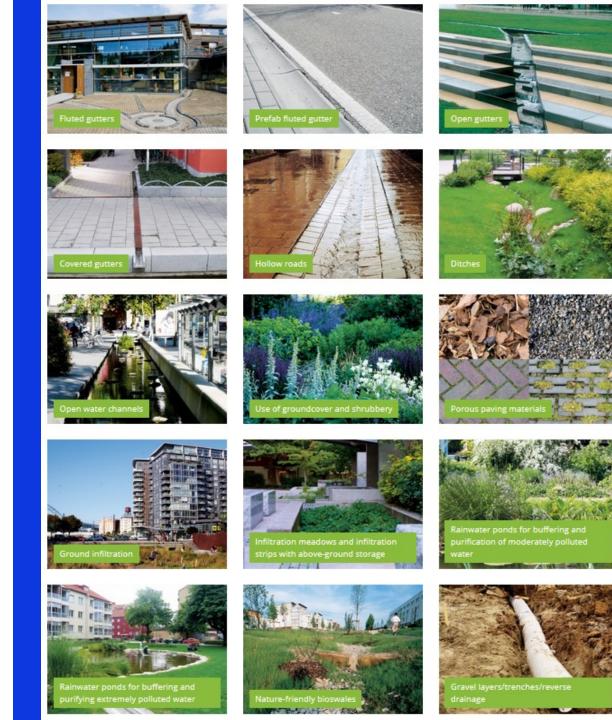
https://www.climatescan.nl/projects/2239/detail

And what about drought (and flood & heatstress)

This second webinar from the series <u>Climate Adaptation: solutions</u> from different corners of the world is about adapting infrastructure to new conditions caused by climate change in Canada and the Netherlands. Floris Boogaard and Darren Swanson will specifically discuss the drought and extreme rainfall.

Deltares

Smart cities: a Green Blue strategy


Solutions

Green infrastructure

[GI is] 'a strategically planned network of natural and semi-natural areas with other environmental features designed and managed to deliver a wide range of ecosystem services' in both rural and urban settings.

European Commission

20

Deltares

International multifunctional inspiration/solutions

Sheet flow Deventer

Speelplaats en waterberging

Raingarden Nijverdal

S) SCHERPGESTEL

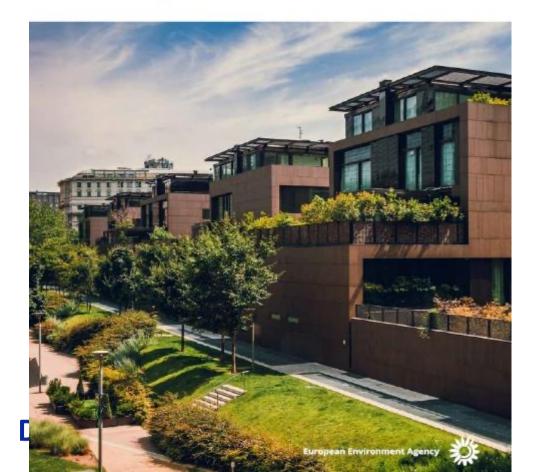
Bio-filtratie Purmerend

Wetlands

Groene rotonde Winschoten

> Bodempassage Enkhuizen

	name	definition	Visual (source: wwclimatescan.nl)
1	Swale	A shallow vegetated channel designed to conduct and retain water, but may also permit infiltration. The vegetation filters particulate matter.	
2	Constructed wetland	Wetland: flooded area in which the water is shallow enough to enable the growth of bottom-rooted plants. Wetlands are constructed in urban areas to store water after stormwater events and improve waterquality.	
3	Waterharmonica	Ecological engineering treating waste water into usable surface water. The Waterharmonica focusses on integrated ecological engineering processes, by optimising multifunctional constructed wetland processes.	
4	Green roofs (and walls)	A roof with plants growing on its surface, which contributes to local biodiversity The vegetated surface provides a degree of retention, attenuation and treatmen of rainwater, and promotes evapotranspiration.	
ວ	Floating urbanization	Floating or amtibious constructions as floating homes will adapt to variation of waterlevels (flooding, drought). Floating homes are constructed around the world to adapt to climate adaptation.	
6	Permeable pavement	A permeable surface that is paved and drains through voids between solid parts of the pavement. A permeable is a surface that is formed of material that is itself impervious to water but, by virtue of voids formed through the surface, allows infiltration of water to the sub-base through the pattern of voids, for example concrete block paving.	
7	Opportunities for adaptation	This category shows locations that provide opportunities for climate adaptation. Uploaded projects are implementation of nature based solutions or locations that are suited for urban resilience.	
8	Hollow gully free roads	Roads that are constructed as drainge. An example is a surface flood pathway: routes in which exceedance waterflows are conveyed on the ground. Also referred to as ,hollow' or ,gullly free' roads.	
9	Sub-surface infiltration	A sub-surface structure into which storm water is conveyed, designed to promote infiltration.	
10	Flexible small urban Resilient infrastructure	An upcomming categorie linked to flexible flood walls to protect infrastructure	The second second

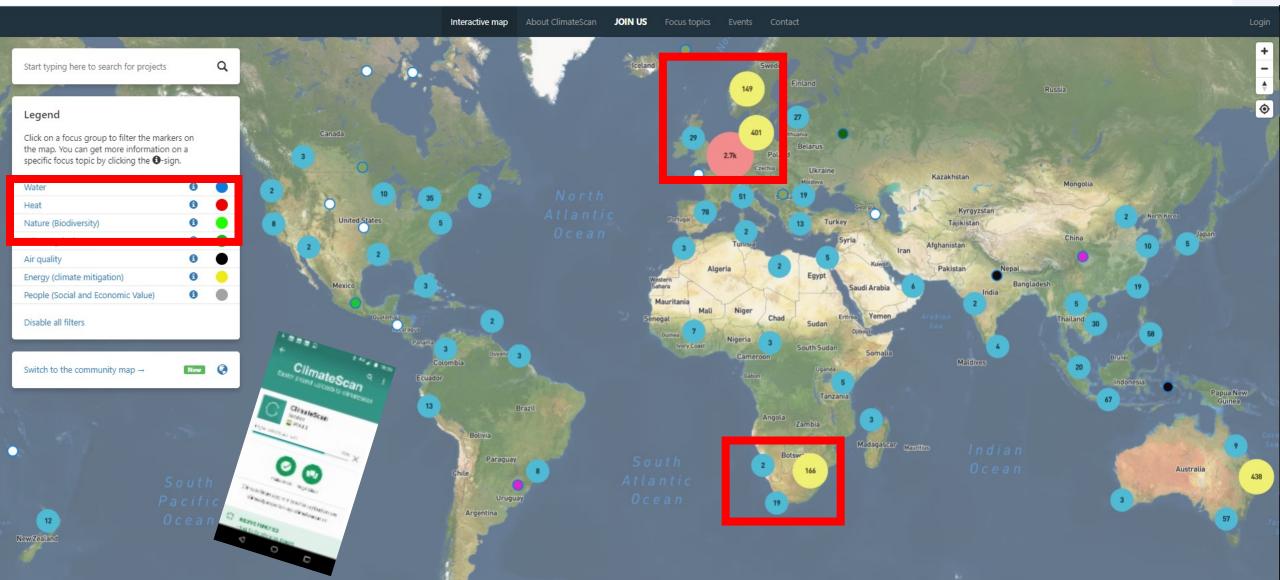


2nd International Climate Change Atlogation Platforms Workshop | Dublin | 10-11 October 2019

Overview of European platforms — content relevant to the core societal challenges

EEA Report No 01/2021

Nature-based solutions in Europe: Policy, knowledge and practice for climate change adaptation and disaster risk reduction

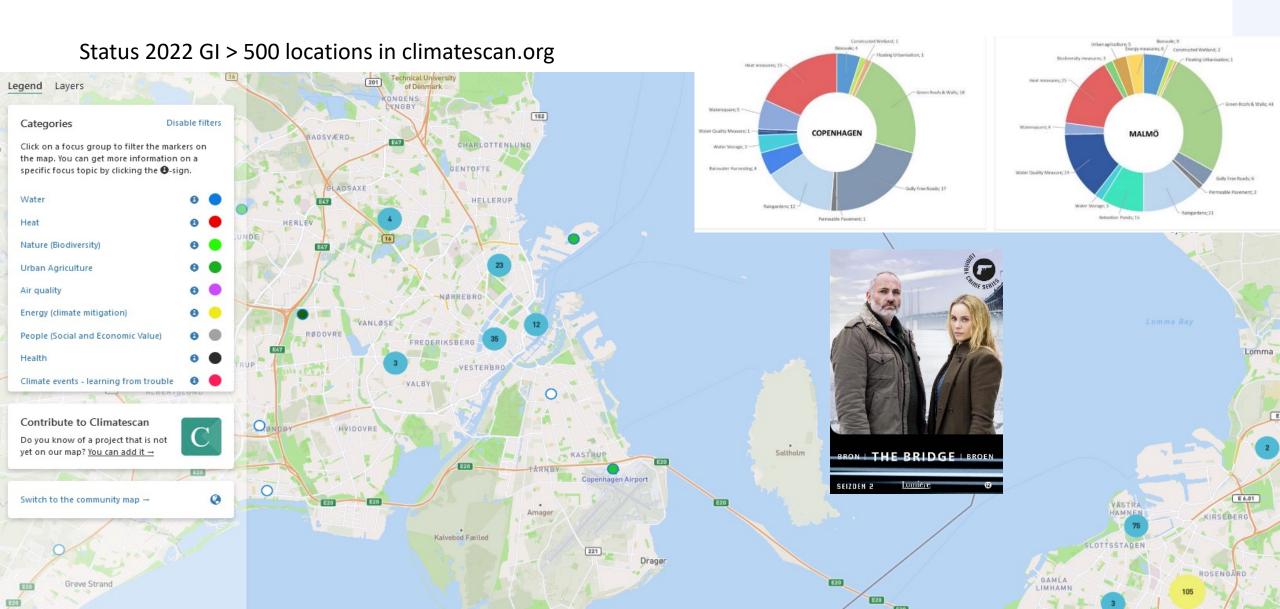

Overview of European platforms - content relevant to the core societal challenges Table A5.3

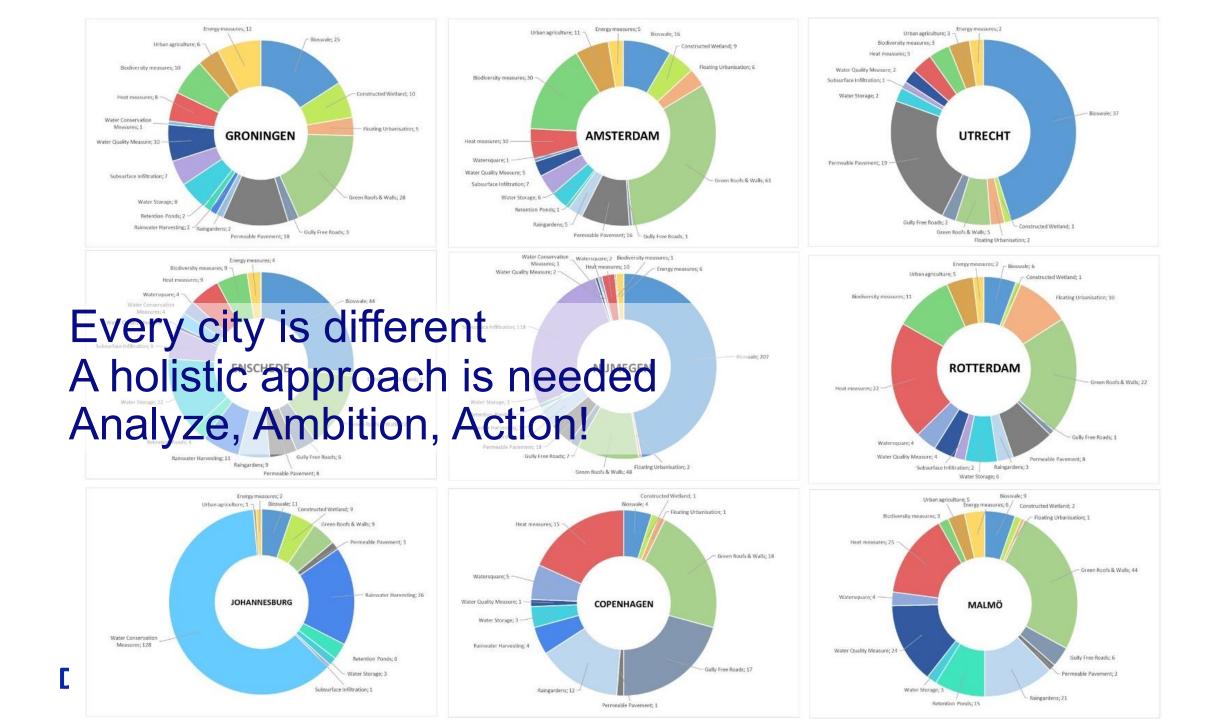
	Core societal challenges						
	CSC1	CSC2	CSC3	CSC4	CSC5	CSC6	CSC7
	Improving society's resilience to extreme weather- and climate-related events	Food security, sustainable agriculture and forestry	Preserving habitat, reducing biodiversity loss and increasing green and blue spaces	Water management	Social justice, cohesion and equity and reducing risk for groups of society highly vulnerable to climate change	Public health and well-being (related to climate change impacts)	Make cities and human settlements inclusive, safe, resilient and sustainable
BISE	√	√	√				
Climatescan	4	✓	√	~	√	1	√
Climate-ADAPT	√				√	√	
DRMKC	√						
Natural Hazards — Nature-based Solutions platform	~	~	×	V	V	¥	4
Nature-based Solutions Initiative	4	√	1	√	~	√	√
Naturvation Urban Nature Atlas	√		*	*	*		
NWRM	√			~			
OPPLA	1	√	√	√	√	1	√
Panorama	1	√	√	√	√	1	√
ThinkNature	√	✓	√	√	✓	√	√
weADAPT	√				×	*	

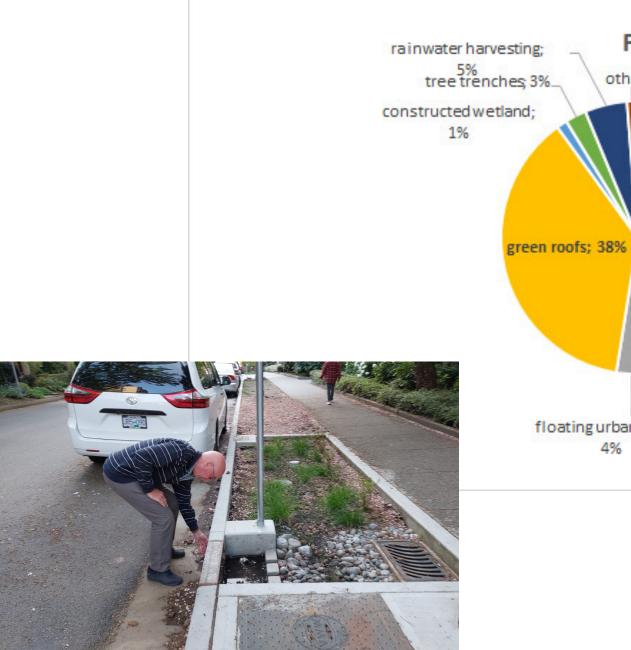
Tick-boxes were selected in consultation with platform managers, except the entries for NWRM and OPPLA. Note

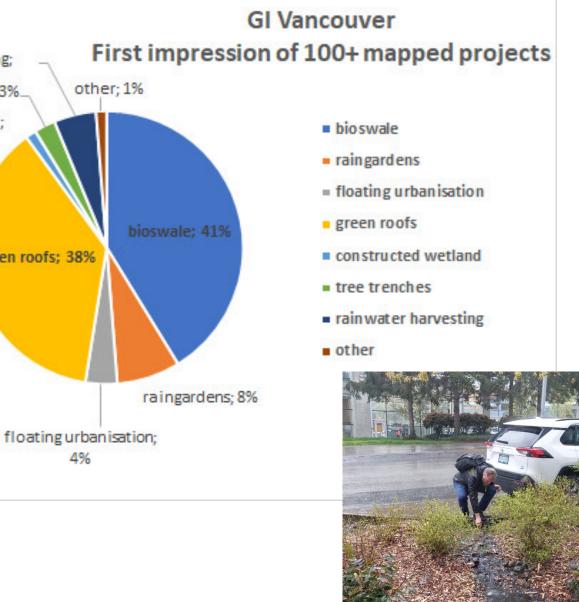
Source: EEA.

ClimateScan.org Mapping climate adaptation solutions




Opportunity: relating GI to urban typologies




Climate Resilient

Strategy: Climate city approach



Daily Functions Wednesday, May 11th, 2022

Metro Vancouver Green Infrastructure Workshop 07:00am – 5:00pm Meeting Evergreen Ballroom

3rd Floor

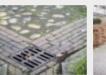
What is an inspiration for Canada?

- NBS since 1997... looking in the future ٠
- Maintenance and monitoring: long term efficiency •

Deltares

Enschede - swales ruwenbos xrf (bio) swale

Description water afvoer drainage en infilratie (wadi's) in Ruwenbos, Enschede


Samenvatting (Dutch description)

Enschede - swales Ruwenbos

Help us provide more detailed information about this project by X contributing!

Images

Downloads evaluatie wadis monitoring wadis aanbevelingen wadis nav onderzoek Ruwenbos 2006 richtlijnen ontwerp, aanleg en beheer wadis

Contribute Help us improve the data we have on this project!

Edit this project

16 Raingarden Azuurweg TIlburg

17 bio Swale Veenweg Deventer

18 Infiltrating sewer Boddenkamp Enschede

19 subsurface road storage Zwolle

20 Swale Vasaliplantsoen Utrecht

Top views on climatescan

Deltares

Top views on climatescan

Goot- en kolkloze klinkerweg, westerbouwlanden te nieuwleusen

Hollow gully free roads (Dutch: kolkloze wijk)

Description

In de nieuwbouwwik Westerbouwlanden wordt hemelwater zichtbaar afgevoerd over de weg. Deze weg heeft geen goot, geen kolken maar ligt alleen lets hol. Bandverlangingen laten het water vrij naar het groen en oppervlaktewater stromen.

Images

Downloads

No downloads added Websites No websites added Contribute Edit this project

Green infiltration zone/ rainwatergarden amsterdam (bio) swale (Wadi)

Description

Een primeur voor Amsterdam: een waterbergende groenstrook, die nu 56.000 liter en straks zelfs 130.000 liter water kan opvangen, en er zo voor zorot dat bewoners geen wateroverlast hebben bil hoosbulen. Vandaag opent wethouder Udo Kock de groenstrook in een woonwijk op de Zuidas. Het is de eerste in zijn soort in Nederland. Wethouder Udo Kock (Water): "We zien dat het steeds vaker hard regent, en dat leidt tot wateroverlast zoals ondergelopen kelders. Deze groenstrook ziet er simpel uit, maar zorgt ervoor dat de kelders in deze buurt niet meer onderlopen. Een prachtig initiatief, heiemaal omdat het relatief weinig kost. * Omdat de groenstrook 35 centimeter lager ligt dan de omgeving, kan hij regenwater opvangen van de wegen en de daken in de buurt. De groenstrook kan (een hoosbul zelfs even in een beek veranderen. Het water blijft maximaal 24 uur in de berging en daarna stroomt het langzaam weg naar het oppervlaktewater en infiltreert het in de bodem. Als bij een zware bui de strock dreigt te overstromen, stroomt het via een overstort het ricci in. Dit voorkomt dat het water de huizen in stroomt. Het unieke aan de strock is dat het opvangen van water wordt gecombineerd met een hoogwaardige inrichting van het groen. De groenstrook is beplant met planten die tegen veel water kunnen en het hele jaar groen zijn. De planten kunnen zelfs een tijdje onder water staan. De gemeente en Waternet willen deze groenstrook op meerdere plekken in de stad aanleggen. De waterbergende groenstrook wordt vanmiddag om vier uur officieel geopend. Hij ligt op de Zuidelijke Wandelweg, op de kruising met de Gaasterlandstraat. De opening is openbaar.

Downloads

No downloads added Websites

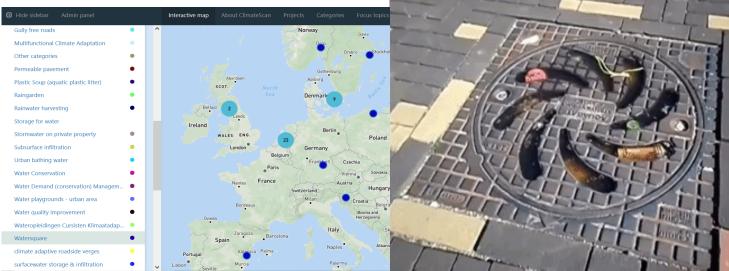
Waterbergende groenstrook voor droge voeten op de Zuidas rainproof: inflitratiestroken met bovengrondse opsjag Waterbergende groenstrook voor droge voeten op de

Zuides rainproof: inflitratiestroken met bovengrondse opslag

Contribute / Edit this project

(Dutch) green roofs 2.0

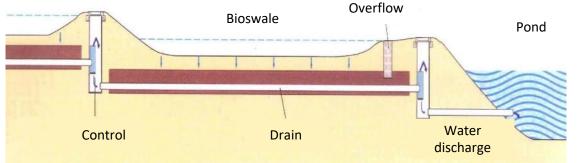
- Green roof programs in most Dutch municipalities
- For existing buildings:
 - Co-funded by municipalities from waste water taxes paid by citizens
 - private investments from real state owners
- For new buildings:
 - Fully funded by private owners


Deltares

First Polderdak, Amsterdam Green roof 2.0 mitigation and adaptation Reacting on weather forecast, RTControl https://www.climatescan.nl/projects/920/detail

Water square in Rotterdam 2013

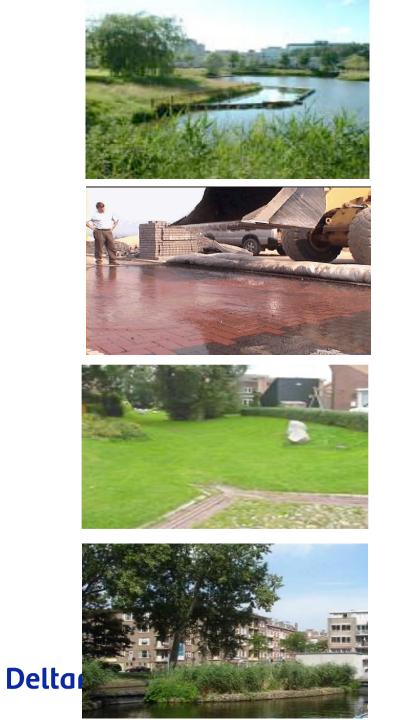
- Multifunctional square
- Combines a space for recreation and sports with temporary water storage
- Square acts as a buffer
- Filtered water is returned to the water system
- Twofold strategy:
 - Money invested in water storage facilities becomes enjoyable and visible
 - Opportunities to create environmental quality and identity to central spaces in neighborhoods.



Deltares

Multifunctional Bio-swales

- Naturally designed buffer and infiltration filter, can be a shallow ditch or depression in the field
- It detaches rainwater runoff from streets and rooftops from the traditional sewer system.
- Most of the year the bioswale remains dry. Only during heavier rain events it will be filled with water.
- This way clean water is infiltrated into the soil it can be used during drier periods.
- The overflow risk of the sewage system is limited as rainwater is separated from the sewer system.
- This leads to a higher water quality of the surface waters.



Innovation, there is more!

A PARADIGM SHIFT IS COMING

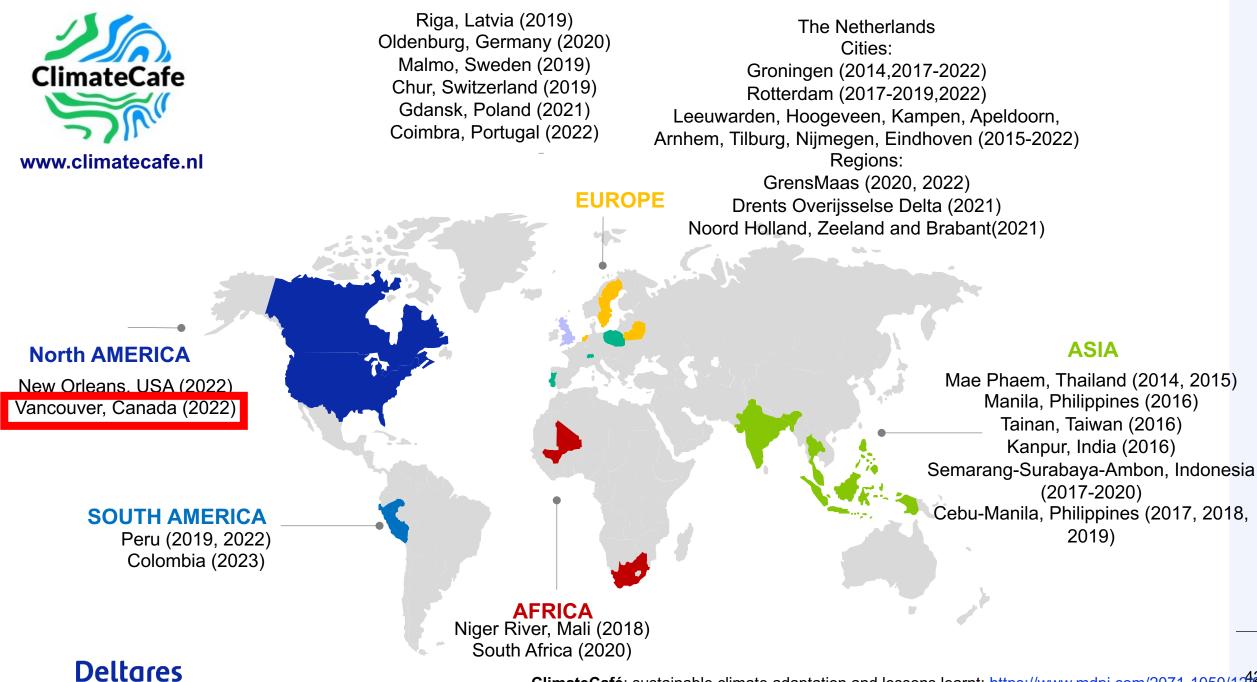
A A A

PAST -> FUTURE pollinator friendly yards on facebook

Factor Time

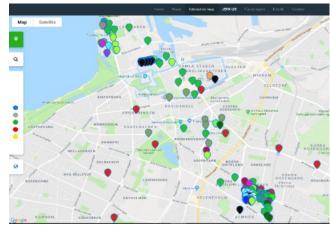
Water storage

Permeable pavement



Swales

phytoremedition



ClimateCafé: sustainable climate adaptation and lessons learnt: https://www.mdpi.com/2071-1050/1219/30

Engaging the community, even in monitoring GI

Mapping GI and characteristics

Dynamic Monitoring (heatstress and air pollution)

Waterquality

Dettering micro pollution

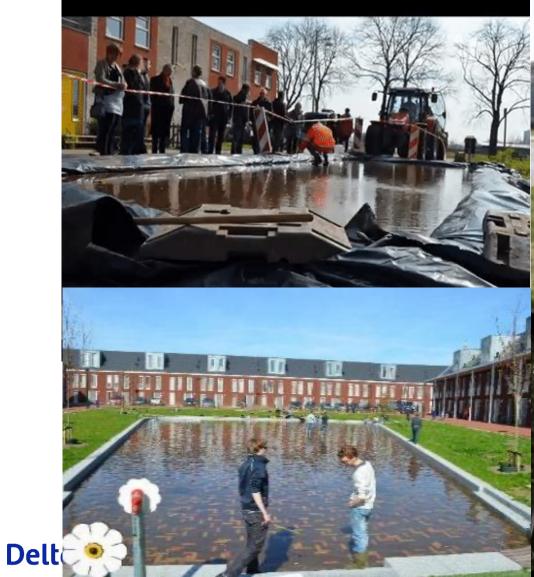
Story telling

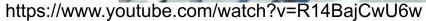
Hydraulic performance

TUDelft

53

-


:::


However, now we face a new challenge; Global Warming flooding our streets.

Floodfighting:

Sponge cities after 20 years?

Challenges in monitoring and Maintenance of GI

challenges

- Cost and capacity of monitoring and maintenance
- Do we want to know? Experience
- As GI often require different types of maintenance, different expertise is required
- Involvement from different departments is required
- Funding agencies need to be convinced of or at least informed on the corresponding maintenance cost

opportunities

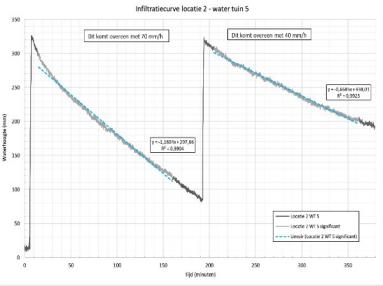
- Partnering with education institutes to make monitoring more affordable to municipalities
- Learn from others' experiences and other sites
- Use citizen science and participation
- Raising awareness, capacity building: climatecafe
- Make monitoring more attractive!

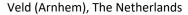
Article

Rapid Assessment and Long-Term Monitoring of Green Stormwater Infrastructure with Citizen Scientists

Thomas Meixner ^{1,*}, Alan R. Berkowitz ², Alisen E. Downey ³, Jose Pillich ³, Reese LeVea ³, Brianne K. Smith ³, Mark Chandler ⁴, Neha Gupta ¹, Stan Rullman ⁵, Anna Woodroof ⁵ and Jennifer Cherrier ³

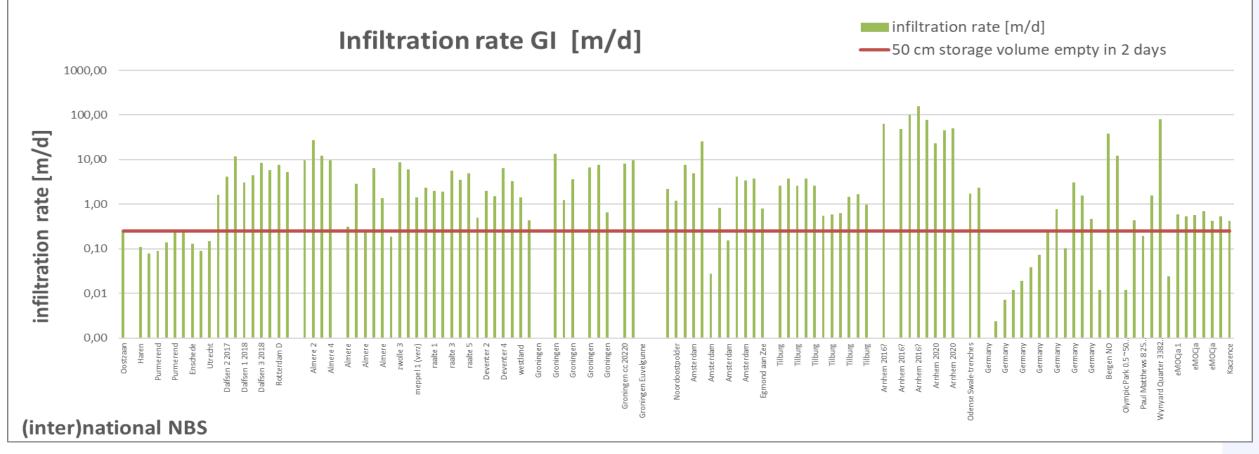
- ¹ Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA; nehagupta@email.arizona.edu
- ² Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA; berkowitza@caryinstitute.org
- ³ Earth and Environmental Sciences, Brooklyn College, City University, New York, NY 11210, USA; Alisen.Downey26@bcmail.cuny.edu (A.E.D.); pillich@gmail.com (J.P.); rlevea@gmail.com (R.L.); briannekellysmith@gmail.com (B.K.S.); Jennifer.Cherrier18@brooklyn.cuny.edu (J.C.)
- ⁴ Citizen Science and Planetary Health, Boston College, Boston, MA 02467, USA; markchandlerw@gmail.com
- Earthwatch Institute, Boston, MA 02135, USA; srullman@earthwatch.org (S.R.); awoodroof@earthwatch.org (A.W.)
- Correspondence: tmeixner@email.arizona.edu



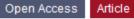

Rain garden: centralized or decentralized at street and house level

Note that infiltration capacity is depending on vegetation, clogging, bio activity more than the engineered soil: maintenance and saturation

Rain gardens: scientific results international knowledge exchange



Poland: Magda Kasprzyk, Wojciech Szpakowski, Eliza Poznańska, Floris C. Boogaard, Katarzyna Bobkowska, Magdalena Gajewska, <u>Technical solutions and benefits of introducing rain gardens – Gdańsk case study</u>, Science of The Total Environment, 2022, 155487, ISSN 0048-9697, https://doi.org/10.1016/j.scitotenv.2022.155487


Norway: Venvik, G.; Boogaard, F.C. Infiltration Capacity of Rain Gardens Using Full-Scale Test Method: Effect of Infiltration System on Groundwater Levels in Bergen, Norway. Land 2020, 9, 520. https://www.mdpi.com/2073-445X/9/12/520 Thailand: Majidi, A.N.; Vojinovic, Z.; Alves, A.; Weesakul, S.; Sanchez, A.; Boogaard, F.; Kluck, J. Planning Nature-Based Solutions for Urban Flood Reduction and Thermal Comfort Enhancement. Sustainability 2019, 11(22), 6361; https://doi.org/10.3390/su11226361.

Sweden: Boogaard, F.C.; Venvik, G.; Pedroso de Lima, R.L.; Cassanti, A.C.; Roest, A.H.; Zuurman, A. ClimateCafé: <u>An Interdisciplinary Educational Tool for Sustainable Climate Adaptation and Lessons Learned</u>. Sustainability 2020, 12, 3694. Netherlands: Kennisportaal klimaatadaptatie, <u>De raingarden biedt net als de wadi veel kansen voor Nederland</u>, Gepubliceerd 10 februari 2022

But we need to conduct long-term monitoring and share results

Deltares

Spatial and Time Variable Long Term Infiltration Rates of Green Infrastructure under Extreme Climate Conditions, Drought and Highly Intensive Rainfall

by 🙁 Floris Cornelis Boogaard ^{1,2} 🖾 💿

¹ Research Centre for Built Environment NoorderRuimte, Hanze University of Applied Sciences, 9747 AS Groningen, The Netherlands

² Deltares Daltonlaan 600, 3584 BK Utrecht Postbus, 85467 3508 AL Utrecht, The Netherlands

Boogaprol To Spatial and Time Variable Long Term Infiltration Rates of Green Infrastructure under Extreme Climate Conditions, Drought and Highly Intensive Rainfall. Water 2022, 14, 840. https://doi.org/10.3390/w14060840

From monitoring results of local GI to international guidelines

Design Parameter	Unit	Netherlands	Germany	UK	Belgium
Organization		(RIONED)	(ATV)	(CIRIA)	(VLARIO)
Distance ground water	m	> 0.5	>1		
Swale area/drained area	Ratio	5 - 10	> 7		5 - 10
Distance to houses	m	>1	1.5 depth		
Swale water depth	m	<0.3	<0.3	< 0.1	<0.3
Spare capacity	m	0.1		0.15	
Width of bottom	m	>0,5	0.6		0.5 - 1
Longitudinal slope	V:H	1 : 3 or less	1:4 or less		1:3 or less
Max velocity	m/s			1 - 2	
Thickness of filter soil	m	0.3 – 0.5	>0.1		0.3 - 0.5
Humus in top layer	%	3-5			
Infiltration capacity	m/day	> 0.5	0.86 < Kd < 86.4		> 0.086
Overflowing frequency	n/yr	1 to 2	0.2		0.2 - 0.5
Time to empty	hour	<74	<74	> 10 min	<74
	•	The second scale of second sca	Set durzh Set durzh Set durzh (1990) Set	- All the door of the	ZUIVERENDE VOORZIENINGEN REGENWATER

Table 2. Concretional design guidelines for swales

Vancouver

3-5 meter & '15 cm rule'

DE FEITEN OVER DE KWALITEIT VAN AFSTROMEND REGENWATER

DATABASE REGENWATER

Deltares

Content: Small scale **urban resilient infrastructure** in practise: what, where and does it work?

- 1. We share Challenges
- 2. So lets share Solutions
- 3. Practical examples of resilient infrastructure
- 4. Tools and information
- 5. More info

Analysis

Analysing your area

Action

Formulating your ambition

Policy and implementation

Thank you

Contact

